
Automatic Differentiation Using CUDA

(japatel) & (tkarandi)Jay Patel Tanvi Karandikar

URL: 15618-cuda-autodiff.netlify.app/

Project Milestone Report

Summary
We are going to implement automatic differentiation on GPU (CUDA) and compare it with a CPU version
and perform a detailed analysis of both systems’ performance characteristics.

Updated schedule

Deadline Task Assignee Status

April 6

Create a skeleton Tensor interface (C++/CUDA) that supports tensor operations Jay Complete

Writing the CPU implementation of Addition Tanvi Complete

Writing the CUDA implementation of Addition Tanvi Complete

April 13

Writing the CPU implementation of Sum (Reduce dimensions) Jay Complete

Writing the CUDA implementation of Sum (Reduce dimensions) Jay Complete

Putting in place a testing framework that allows to compare the results and performance
of both operations. Tanvi Complete

Writing the CPU implementation of Multiplication Jay Complete

Writing the CUDA implementation of Multiplication Tanvi Complete

April 20

Writing the CPU implementation of Broadcast (Increase dimensions) Tanvi Complete

Writing the CUDA implementation of Broadcast (Increase dimensions) Jay Complete

Create a skeleton Tensor interface (Python) that supports tensor operation tracking Tanvi Complete

Implement Add, Multiply, Broadcast, Sum operations in python Jay Complete

Update Add and Multiply to allow auto-broadcasting Tanvi Complete

April 24

Add support for automatic differentiation for Add, Multiply, Sum, Broadcast Jay Ongoing

Writing the CPU implementation of Transpose Tanvi Ongoing

Writing the CUDA implementation of Transpose Tanvi Ongoing

April 27

Writing the CPU implementation of Power Jay

Writing the CUDA implementation of Power Jay

Writing the CPU implementation of Matrix Multiplication Jay

Writing the CUDA implementation of Matrix Multiplication Tanvi

Add support for automatic differentiation for Power, Transpose, Matrix Multiplication Tanvi

April 30
Benchmark CPU vs GPU performance for all operations with various tensor sizes with
detailed analysis Jay, Tanvi

May 4 Preparing final webpage and poster for presentation. Jay, Tanvi

mailto:japatel@andrew.cmu.edu
mailto:tkarandi@andrew.cmu.edu
https://15618-cuda-autodiff.netlify.app/


Progress summary

We have finished the implementation of 4 primitive functions that operate on tensors. We have split the
code in two main modules:

1. autodiff.tensorlib: A C++/CUDA module that holds 2D tensor objects and exposes an operations
API to the python module for carrying out tensor operations (add, multiply, etc). It supports
operations on CPUs as well as Nvidia GPUs. The following operations are currently
implemented:

a. Add: Pointwise addition of two tensors of the same shape (dimension)
b. Multiply: Pointwise multiplication of two tensors of the same shape (dimension)
c. Sum: Summation of elements along an axis
d. Broadcast: Subject to certain constraints, the smaller tensor is “broadcast” across the

larger tensor so that they have compatible shapes for performing tensor operations (Add,
Multiply, etc).

2. autodiff.core: A python module that performs reverse-mode automatic differentiation by keeping
track of operations and maintaining a topologically sorted computational graph. Similar to
pytorch’s autograd, calling .backward() on a tensor will trigger gradient backpropagation in the
computational graph. The graph contains details (a vector-jacobian product function) about how
partial derivatives of a tensor can be calculated.



Goals and deliverables

We are on track with the project goals and deliverables. We have successfully completed the
implementation of Addition, Multiplication, Sum, and Broadcast operations for both CPU and CUDA
versions. Our next step is to complete the implementation of Transpose and Power operations for both
CPU and CUDA versions. In our original proposal, the python library was low priority but we have
successfully implemented sections of the library and are on track to fully support automatic differentiation
for all operations.

Plan to achieve:

● CPU version and CUDA version implementations of the following operations:
○ Addition
○ Multiplication
○ Transpose
○ Power
○ Matrix Multiplication

● Detailed analysis of the performance characteristics of both the implementations across different
input matrix sizes.

● Implementation of a library in Python that uses the CPU and GPU versions of operations defined
in the previous point to perform automatic differentiation. (Upgraded)

Hope to achieve:

● CPU version and CUDA version implementations to support 2D convolutions
● Detailed analysis of the performance characteristics of both the implementations across different

architectures (different GPUs -1050Ti, 2080 Ti, etc, memory per CPU etc).
● Benchmark CPU vs GPU performance for training a simple multilayer neural network on

MNIST. (New addition)

Plan for poster session:

● We plan to present a detailed analysis of the performance of individual tensor operations
including a summary of benchmarking experiments.

● We will also present complete computational graphs for both implementations (CPU and GPU).
● We plan to have an interactive demo of our Python library that demonstrates how our code runs

for some small demo matrix operations.

Limitations:

● At this point, we do not anticipate any roadblocks or unknowns. Finishing the project should be
straightforward and just a matter of writing all the code and running benchmarking experiments.


