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SUMMARY:

We are going to implement automatic differentiation on GPU (CUDA) and compare it with a CPU version
and perform a detailed analysis of both systems’ performance characteristics. Automatic differentiation
will be supported for first-order partial derivatives of functions that are commonly used in Deep Learning
i.e addition, multiplication, transpose, power, matrix multiplication (a stretch goal is to also support 2D
convolution).

BACKGROUND:

Deep learning involves a lot of computation on tensors, multi-dimensional arrays of floats. Modern deep
learning frameworks use automatic differentiation for training neural networks (error backpropagation).
Training neural networks is compute-intensive due to a lot of tensor operations (matrix multiplication,
addition, etc.). Automatic differentiation in itself does not benefit from parallelism, however tensor
operations – which take up most of the compute time during training – can be parallelized. This
parallelism can be achieved by using vectorization, which involves performing the same operation on
multiple elements of a tensor simultaneously. This can be achieved using SIMD instructions on CPUs, or
using GPU threads that execute the same instruction on different elements of the tensor in parallel.
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The automatic differentiation library will be written in python – so that we can quickly implement the
core logic. However, tensor operations will be carried out on GPUs using CUDA. We will either use
pycuda or ctypes as an interface with CUDA C++ code.

THE CHALLENGE:

In the context of automatic differentiation, the overall speedup of the system is of interest rather than the
speedup achieved for individual operations. While speeding up a single operation can be relatively
straightforward – implementing a kernel, managing memory becomes complicated when dealing with
multiple operations that produce tensors required for backpropagation. To reduce memory copy overhead,
tensors must be kept in local memory until backpropagation is complete. Additionally, since tensor sizes
are not fixed, a mechanism must be developed to automatically determine block size and thread count for
each kernel operation along with data locality – especially for the matrix multiplication operations.
Therefore, to fully optimize the system, we need to consider the interdependence of operations, memory
management, and runtime optimization of the kernel operations.

RESOURCES:

- We will be starting from scratch.
- For the automatic differentiation implementation, Dougal Maclaurin thesis’s (Chapter 4 describes

Autograd) as a reference.

GOALS AND DELIVERABLES:

PLAN TO ACHIEVE:

● CPU version and CUDA version implementations of the following operations:
○ Addition
○ Multiplication
○ Transpose
○ Power
○ Matrix Multiplication

● Detailed analysis of the performance characteristics of both the implementations across different
input matrix sizes.

● Implementation of a library in Python that uses the CPU and GPU versions of operations defined
in the previous point to perform automatic differentiation. (This is a low-priority part, and in case
the work goes more slowly we will not do this)

HOPE TO ACHIEVE:

● CPU version and CUDA version implementations to support 2D convolutions
● Detailed analysis of the performance characteristics of both the implementations across different

architectures (different GPUs, memory per CPU etc).

FINAL DELIVERABLE AT POSTER SESSION:

We plan to have an interactive demo of our Python library that demonstrates how our code runs for some
small demo matrix operations. We will also present detailed visualizations of our benchmarking
experiments and hope to show a much better improvement in runtime in CUDA over the CPU-based
implementation. We hope to see up to 20x speedup over the CPU-based implementation.



PLATFORM CHOICE:

The platform we hope to use for deployment and benchmarking is the GHC machines. We plan to use the
GHC machines for development, testing and benchmarking as they provide a convenient development
environment and have reasonably powerful GPUs.

We choose C++ as our language for tensor operations so that we can leverage CUDA C++. C++ allows
for a lower level of memory management and thus will allow for application of more sophisticated
parallelization paradigms. We choose Python to implement our frontend and library as it will be quick to
implement and we can focus more effort on the development of parallel code.

SCHEDULE:

Deadline Task

April 9 Writing the CPU implementation of Addition

Writing the CUDA implementation of Addition

Putting in place a testing framework that allows to compare the results
and performance of both operations.

April 16 Writing the CPU implementation of Multiplication

Writing the CUDA implementation of Multiplication

Writing the CPU implementation of Transpose

Writing the CUDA implementation of Transpose

April 23 Writing a basic Python interface as a library that uses the CPU and
CUDA implementations on the kernels

Writing the CPU implementation of Power

Writing the CUDA implementation of Power

April 30 Writing the CPU implementation of Matrix Multiplication

Writing the CUDA implementation of Matrix Multiplication

Visualizing the performance of all implemented kernels across different
matrix sizes.

May 4 Preparing final webpage and poster for presentation.


