
Automatic Differentiation on CUDA

Jay Patel, Tanvi Karandikar

May 5, 2023

URL: 15618-cuda-autodiff.netlify.app

Abstract

We have implemented automatic differentiation on GPU (CUDA) and compared it
with a CPU version and OpenMP version. We performed a detailed analysis of the
systems’ performance characteristics. Automatic differentiation will be supported for
first-order partial derivatives of functions that are commonly used in Deep Learning
i.e addition, multiplication, transpose, power, matrix multiplication, etc. We have
compared performance of the library for 3 settings: Single core CPU, OpenMP
thread parallelism, and GPU (CUDA) SIMD parallelism.

1 Background

Deep learning frameworks rely heavily on tensor operations, such as matrix multiplication
and addition, for training neural networks through error backpropagation. Automatic dif-
ferentiation is a key component of this process, as it allows for efficient computation of
gradients for the training process. Automatic differentiation in itself does not benefit from
parallelism, however tensor operations – which take up most of the compute time during
training – can be parallelized. The key data structures in this project are tensors, which
are multi-dimensional arrays of floating-point numbers. The part that is computationally
expensive and could benefit from parallelization is the tensor operations, which take up most
of the compute time during training. The workload can be broken down into individual ten-
sor operations, which can be parallelized using SIMD instructions on CPUs or using GPU
threads that execute the same instruction on different elements of the tensor in parallel.

1.1 Background: Automatic Differentiation

Automatic differentiation is a key component of many machine learning and optimization
algorithms that require the computation of partial derivatives. It is a computational tech-
nique that allows for the efficient and accurate evaluation of gradients of functions, even
when the functions are complex and nonlinear. Automatic differentiation involves breaking
down a function into a sequence of elementary/primitive operations and applying the chain
rule to compute the derivative of the function.

1



There are two modes of automatic differentiation: forward mode and reverse mode. For-
ward mode automatic differentiation computes the derivative of a function with respect to
a single input variable, while holding all other input variables constant. It proceeds by eval-
uating the function and its derivatives at a single point, and then propagating these values
through the sequence of elementary operations in the function.

Reverse mode automatic differentiation, on the other hand, computes the derivative of a
function with respect to all of its input variables simultaneously. It proceeds by first com-
puting the function and its derivatives at a single point, and then propagating these values
backwards through the sequence of elementary operations in the function. Reverse mode
automatic differentiation is particularly useful in the context of deep learning, where the
number of input variables can be very large and the cost of computing the gradients can be
prohibitive using traditional methods.

Concretely, given a function mapping an N-dimensional tensor to a scalar (1 dimension)
value, F : RD → R that is defined as the composition of four primitive functions (like matrix
addition, multiplication, etc) , F = D ◦C ◦B ◦A. We decompose the function down so that
we can utilize values generated in intermediate steps for the purpose of calculating gradients
(or more formally Jabobians):

F (x) = y, (x ∈ RD, y ∈ R) (1)

where y = C(b), b = B(a), a = A(x).

To calculate the partial derivatives of F with respect to a, b, c, d, and x we can use the
chain rule and the formula given in equation (1):

∂F

∂c
=

∂y

∂c
= D′(c) (2)

∂F

∂b
=

∂y

∂c

∂c

∂b
= D′(c)C ′(b) (3)

∂F

∂a
=

∂y

∂c

∂c

∂b

∂b

∂a
= D′(c)C ′(b)B′(a) (4)

∂F

∂x
=

∂y

∂c

∂c

∂b

∂b

∂a

∂a

∂x
= D′(c)C ′(b)B′(a)A′(x) (5)

The functions A′, B′, C ′, and D′ are used to compute the Jacobians of A, B, C, and D,
respectively. These Jacobians represent the partial derivatives of the output of each primi-
tive function with respect to its input. By chaining these Jacobians together using the chain
rule, we can calculate the partial derivative of F with respect to each intermediate variable
a, b, c, and d. This allows us to efficiently compute gradients of complex functions.

2



Figure 1: Forward mode

In forward mode, the Jacobians are calculated with respect to the input variable, for
example, ∂b

∂x
. Since x ∈ RD is a vector, this Jacobian contains D times as many entries as

the corresponding value of b. In reverse mode, we calculate the Jacobians with respect to
the output variable, for example, ∂y

∂b
. Since y ∈ R is a scalar, this Jacobian contains only as

many values as b. Therefore, reverse mode is more efficient for evaluating the gradient of a
vector-to-scalar function, once the primitive Jacobians A′(x), B′(a), C ′(b), and D′(c) have
been evaluated.

In forward-mode, we compute Jacobians like ∂a
∂x
, ∂b

∂x
, which correspond to the derivatives

of each of the intermediate variables with respect to the input x. We accumulate these values
by left-multiplying the previous step’s Jacobian by the current primitive Jacobian. In con-
trast, reverse-mode differentiation works by accumulating Jacobians in the other direction,
from output to input. It computes values such as ∂y

∂a
, ∂y

∂b
, which correspond to the derivatives

of the output y with respect to each of the intermediate variables. These values are accu-
mulated by right-multiplying the previous step’s Jacobian by the current primitive Jacobian.

If the input x is a vector in RD and the output y is a scalar, reverse-mode differentiation
is more efficient than forward-mode because it accumulates values that are a factor of D
smaller. This means that the computation is less complex and requires fewer calculations.
For our implementation, we have used reverse mode automatic differentiation. For most
operations, each element is independent of other elements in the same matrix – This is a
good criteria for parallelism. Using GPU SIMD, we aim to parallelize as many computations
as possible while efficiently managing memory usage.

2 Approach

In the context of automatic differentiation, the overall speedup of the system is of interest
rather than the speedup achieved for individual operations. While speeding up a single

3



Figure 2: Reverse mode

operation can be relatively straightforward – implementing a kernel, managing memory be-
comes complicated when dealing with multiple operations that produce tensors required for
backpropagation. To reduce memory copy overhead, tensors must be kept in local memory
until backpropagation is complete. Additionally, since tensor sizes are not fixed, a mech-
anism must be developed to automatically determine block size and thread count for each
kernel operation along with data locality – especially for the matrix multiplication opera-
tions. Therefore, to fully optimize the system, we need to consider the interdependence of
operations, memory management, and runtime optimization of the kernel operations.

Figure 3, shows a high-level design for an automatic differentiation library. The library
is divided into two major components: autodiff.core and autodiff.tensorlib. tensorlib is re-
ponsible for the low-level operations on the actual data, while core manages computational
graphs for the computed functions.

Figure 3: High-level design

The autodiff.tensorlib component (Figure 4) is a C++/CUDA module that holds 2D
tensor objects and exposes an operations API to the Python module for carrying out tensor
operations such as addition, multiplication, etc. It is designed to support operations on
CPUs as well as Nvidia GPUs, which makes it a highly versatile and scalable component.
The ability to use GPUs for tensor operations can significantly accelerate the computation
of gradients in large models, making this component a valuable asset for machine learning
applications.

4



The autodiff.core component (Figure 4) is a Python module that performs reverse-mode
automatic differentiation. It does so by keeping track of operations and maintaining a
topologically sorted computational graph. This graph contains details about how partial
derivatives of a tensor can be calculated, making it possible to compute the gradients of any
function that can be expressed as a composition of tensor operations. Similar to PyTorch’s
autograd, calling .backward() on a tensor will trigger gradient backpropagation in the com-
putational graph, allowing users to easily compute gradients and optimize parameters in
their models.

Figure 4: Implementation

5



We implemented the following tensor operations, for both – single core CPU and GPU
via cuda kernels:

1. Add: This operation adds two tensors element-wise. The input tensors must have the
same shape.

2. Broadcast: This operation broadcasts the smaller tensor along the specified axis to
match the shape of the larger tensor, and then performs element-wise addition. The
broadcast axis must have the same size.

3. Copy: This operation creates a new tensor with the same contents as the input tensor.

4. Divide: This operation divides two tensors element-wise. The input tensors must have
the same shape.

5. Exponential: This operation applies the exponential function element-wise to the
input tensor.

6. Logarithm: This operation applies the natural logarithm function element-wise to
the input tensor.

7. Matrix multiplication: This operation performs matrix multiplication between two
tensors. The first tensor must have shape (M, N) and the second tensor must have
shape (N, K), resulting in an output tensor with shape (M, K).

8. Max: This operation computes the maximum element along the specified axis of the
input tensor. The output tensor has one less dimension than the input tensor.

9. Multiply: This operation multiplies two tensors element-wise. The input tensors must
have the same shape.

10. Negate: This operation negates all elements of the input tensor.

11. Power: This operation raises each element of the first tensor to the corresponding
element of the second tensor.

12. Rectified Linear Unit (ReLU): This operation applies the ReLU function element-
wise to the input tensor. The output tensor has the same shape as the input tensor.

13. Subtract: This operation subtracts two tensors element-wise. The input tensors must
have the same shape.

14. Sum: This operation computes the sum of elements along the specified axis of the
input tensor. The output tensor has one less dimension than the input tensor.

15. Transpose: This operation transposes the input tensor by swapping its rows and
columns. The output tensor has the same shape as the input tensor, but with the
dimensions rearranged.

6



For each of the operations, we use a similar strategy to parallelize calculations as described
here. Each thread computes a single element in the output tensor. Blocks were used to group
threads and each block processed a chunk of the input tensors. The number of blocks and
threads per block were determined based on the size of the input tensors and the maximum
number of threads supported by the GPU. We tried varying number of threads for each
function – more on this in the result section.

To enable better mapping to the parallel machine, the original serial algorithm was
modified to use parallelism in the form of GPU kernels. Each operation was implemented as
a separate kernel.

3 Results

3.1 Understanding behaviour of different operators

The core parallelizable parts of our algorithm are the 15 operators demonstrated in Figure 2.
We perform extensive benchmarking of these and based on our findings, we group the opera-
tors into subgroups. Each subgroup of operators exhibits similar behavior – we demonstrate
the behavior by presenting results from on of the operators in the subgroup.

Our benchmarking experiments consisted of testing the change in behavior along two
kind of plots. First, we analysed how the speedups for the CUDA implementation changed
as we changed the number of threads per block. Second, we analysed how the speedups
for OpenMP and CUDA changed when we kept the number of threads per block constant
(chosen to be 1024) and varied the size of the matrices (we used square matrices for our
experiments here).

3.1.1 Add, Divide, Multiply, Negate, Subtract, Transpose, Sum, Broadcast

All operators in this group showed similar behavior in their plots. This is expected as
the general behavior of all the operators in this group is the same: to apply element-wise
transformations on one/two matrices. We arbitrarily choose to present the results for the
Add operator in Figure 5.

For really small matrices, we observe that GPU has an overall slow down simply because
time is wasted on launching threads. However, as we increase the size of matrices, we observe
a speedup for the backward operation as the calculation of the Jacobian (multiplication in
this case) is parallelized as well. As we increase the number of threads (GPU), beyond 200
threads per block, we observe no speedup because the number of the total number of threads
that can be executed in parallel exceeds the number of available processing ALUs.

3.1.2 MatMul

MatMul exhibited unique behavior, so we discuss its behavior separately. See Figure 6. We
observed that the speedup of a parallel algorithm for matrix multiplication on a GPU is
influenced by several factors, such as the size of the matrix being multiplied. At smaller
matrix sizes, the speedup tends to be low due to the overheads associated with launching
parallel threads on the GPU. However, as the matrix size increases, we infer that the parallel

7



(a) (b)

Figure 5: Observing speedups for the Add operator

algorithm can take advantage of the massive parallelism offered by the GPU, leading to an
increase in speedup. This results in the initial rise of the speedup curve. We further speculate
that as the matrix size continues to increase, the parallel algorithm may start to experience
resource contention and memory bandwidth limitations, which can limit the speedup. At
this point, we infer that the speedup curve tends to plateau, indicating that the performance
improvement from parallelism has reached its limit.

(a) (b)

Figure 6: Observing speedups for the MatMul operator

3.1.3 Log, Exp, Power, Max, ReLu

Exp and Log are similar to operators in the previous group, in that they apply element-wise
transformations to a single matrix. They however did exhibit a particular unique behavior,
see Figure 7. As we increase the number of (GPU) threads, beyond 100 threads per block, we

8



observe no speedup because the number of the total number of threads that can be executed
in parallel exceeds the number of available processing ALUs.

(a) (b)

Figure 7: Observing speedups for the Log operator

We observed that the performance of ”log” and ”exp” functions on a matrix increases
as we increase the size of the matrix. This increase in performance is due to the inher-
ent parallelism that these functions offer, which can be exploited better as the size of the
matrix increases. However, we also observed that for the backward pass, which involves
the calculation of the Jacobian, we do not see as much speedup as we increase the size of
the matrix. This is because the overhead associated with the calculation of the Jacobian
limits the performance improvement that can be achieved through parallelism. As a result,
the performance gains from increasing matrix size are limited, and the speedup is not as
significant as for ”log” and ”exp” functions.

3.2 Overall speedup achieved by the algorithm: Test on a 3 layer
neural network

We trained multiple three-layered fully connected neural networks of varying sizes to measure
and understand the overall speedup of automatic differentiation. We observed the OpenMP
version did not scale as the CPU utilization during training was 100% alluding the fact that
all cores had been used up, while the GPU version kept on speeding up as we increased the
number of parameters of the neural network.

4 Credits

The split of the work was 50-50 between the two teammates. The work done by each person
is as follows.

9



Figure 8: Implementation

Jay:

• Create a skeleton Tensor interface (C++/CUDA) that supports tensor operations

• Writing the CPU implementation of Sum (Reduce dimensions)

• Writing the CUDA implementation of Sum (Reduce dimensions)

• Writing the CPU implementation of Multiplication

• Writing the CUDA implementation of Broadcast (Increase dimensions)

• Implement Add, Multiply, Broadcast, Sum operations in python

• Add support for automatic differentiation for Add, Multiply, Sum, Broadcast

• Writing the CPU implementation of Power

• Writing the CUDA implementation of Power

• Writing the CPU implementation of Matrix Multiplication

Tanvi:

• Writing the CPU implementation of Addition

• Writing the CUDA implementation of Addition

• Putting in place a testing framework that allows to compare the results and perfor-
mance of both operations.

• Writing the CUDA implementation of Multiplication

10



• Writing the CPU implementation of Broadcast (Increase dimensions)

• Create a skeleton Tensor interface (Python) that supports tensor operation tracking

• Update Add and Multiply to allow auto-broadcasting

• Writing the CPU implementation of Transpose

• Writing the CUDA implementation of Transpose

• Writing the CUDA implementation of Matrix Multiplication

• Add support for automatic differentiation for Power, Transpose, Matrix Multiplication

• Adding the OpenMP version of the code

Both:

• Benchmark CPU vs GPU performance for all operations with various tensor sizes with
detailed analysis

• Preparing final webpage and poster for presentation.

11


	Background
	Background: Automatic Differentiation

	Approach
	Results
	Understanding behaviour of different operators
	Add, Divide, Multiply, Negate, Subtract, Transpose, Sum, Broadcast 
	MatMul
	Log, Exp, Power, Max, ReLu

	Overall speedup achieved by the algorithm: Test on a 3 layer neural network

	Credits

